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Abstract 
In this study the thermoelectric effect is investigated in terms of thermoelectric power. The calculations were carried out based 

on Boltzmann transport equation by taking ionized impurity scattering as a dominant mechanism for heavily doped n-type silicon 

at 300K with charge concentration varies from 2x1018/cm3 – 20x1020/cm3. It is known that doping of materials can induce Fermi 

level shifts and doping can also induce changes of the transport mechanisms. The result of this study shows doping also induces 
changes in thermoelectric power. The magnitude of the change is different for consideration of parabolic density of states and 

modified density of states which amounts to 2% on average in favor of the parabolic consideration. There is also on average a 

1.44% difference for the calculated values of Peltier coefficient for the two cases in favor of the parabolic consideration.  

 
Keywords: doping, thermoelectric effect, thermoelectric power. 

 

Resumen 
En este estudio se investiga el efecto termoeléctrico en términos de potencia termoeléctrica. Los cálculos se realizaron en base a 

la ecuación de transporte de Boltzmann tomando la dispersión de impurezas ionizadas como un mecanismo dominante para el 

silicio de tipo n fuertemente dopado a 300K con una concentración de carga que varía de 2x1018/cm3 a 20x1020/cm3. Se sabe 
que el dopaje de materiales puede inducir cambios en el nivel de Fermi y el dopaje también puede inducir cambios en los 

mecanismos de transporte. El resultado de este estudio muestra que el dopaje también induce cambios en la energía 

termoeléctrica. La magnitud del cambio es diferente para la consideración de la densidad parabólica de estados y la densidad 

modificada de estados que asciende a un 2% en promedio a favor de la consideración parabólica. También hay en promedio una 
diferencia de 1,44% para los valores calculados del coeficiente de Peltier para los dos casos a favor de la consideración parabólica. 

 
Palabras clave: dopaje, efecto termoeléctrico, energía termoeléctrica. 

 

 

I. INTRODUCTION  

A semiconductor can be considered heavily doped when the 

impurity band associated with the doped impurity merges with 

either in the conduction and valence band. There are two 

aspects with direct influence on the currier transport namely 

tailing of states into the band gap. It thus seems useful to 

determine theoretically the location of the Fermi level in 

heavily doped silicon taking into account the density of states 

in the tails [1, 2, 3]. According to [1], the density of state for 

heavily doped silicon is expressed in [4] as 

 

(𝑧) =  
𝑚𝑏
∗
3
22
3
4𝛿
1
2

𝜋2ℏ3
𝑦(𝑧),                           (1) 

whereas, 

(𝐸) =  
8√2𝜋𝑚𝑛

∗
3
2

ℎ3
𝐸
1

2,                            (2) 

 

represents the parabolic total density of states in the 

conduction band. 

In Eq. (1) for non-parabolic modified density of states, the 

term y(z) is given by  

 

𝑦(𝑧) =  
1

2
∫ (𝑧 − 𝜁)

1

2𝑒𝑥𝑝(−𝜁2)𝑑𝜁
𝑧

−∞
,                (3) 

 

and 

𝑧 =
𝐸

√2
.                                     (4) 

 

The standard deviation of the Gaussian distribution for the 

impurity potential energy is 

 

𝛿 =  (
𝑛𝑒4𝑎𝑠

8𝜋𝜖0
2𝜖𝑑
2)

1

2
= (

𝑁𝑑𝑒
4𝑎𝑠

8𝜋𝜖0
2𝜖𝑑
2)

1

2
.                     (5) 

 

For a screened coulomb potential of impurity atoms with ϵd is 

the dielectric constant of the given semiconductor. The 

Thomas-Fermi screening length according to [5] is 

 

𝑎𝑠 = (
𝜋
𝜋
3𝜖0𝜖𝑑ћ

2

3
1
3𝑁𝑑

1
3𝑒2𝑚𝑛

∗

)

1

2

.                           (6) 

 

The density of states function given by Equation 1 is very 

complicated and thus is not useful for making any calculation.  
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Slotboom [2] has however; suggested the following 

approximation for y(z). 

 

𝑦(𝑧)  ≅  𝑧
1

2 [1 −
1

16𝑧2
],                          (7) 

 

for z > 0.601, equally. E > 0.85𝛿  and  

 

𝑦(𝑧)  ≅  
1

2𝜋
1
2

𝑒𝑥𝑝(−𝑧2){1.225 − 0.906[1 − 𝑒𝑥𝑝(2𝑧)]},   (8) 

 

for z  0.601. 

Using Eqs. (7) and (8) for y(z), we obtain the following 

expression of  the electron concentration in the conduction 

band for modified density of states having band tails  

 

𝑛 =  2 ∫𝑓0 𝜌(𝐸)𝑑𝐸 =
𝑚𝑛
∗
3
22
5
4𝛿
3
2

𝜋2ћ3
𝜓0,                 (9) 

 

where 𝜓0is obtained by setting  = 0 into 

 

𝜓 =  
1

2𝜋
1
2

∫ |𝑧|𝜆𝑒𝑥𝑝(−𝑧2)(
0.319+0.906𝐸𝑥𝑝(2𝑧)

1+𝐸𝑥𝑝{1.494𝑛𝑛

5
12𝑧−𝜂}

)𝑑𝑧 +
0.601

−∞

 ∫
𝑧
1
2[1−

1

16𝑧2
]

1+𝑒𝑥𝑝{1.494𝑛𝑛

5
12𝑧− 𝜂}

𝑑𝑧
∞

0.601
.                        (10) 

 

It is more convenient to introduce normalized electron 

concentration nn given by 

 

𝑛𝑛 = 
𝑛

1025 𝑚3⁄
.                               (11) 

 

In this study the semi-classical and quantum treatments are 

applied in the calculations of scattering mechanisms under the 

assumptions of the electron concentrations from 2x1018- 

2x1020/cm3 and in the temperature range 77 – 300K. 

 

A. Linearized Boltzmann Equation with relation time 

approximation 

 

All the quantities of interest to us may be expressed 

immediately in terms of Fermi-Dirac distribution f(r, k.t). The 

Boltzmann transport equation is therefore 

 
𝝏𝒇

𝝏𝒕
+ 𝐯.𝛁𝐟 + 𝐅. 𝛁𝐤𝐟 = (

𝛛𝐟

𝛛𝐭
)
𝐜
.                       (12) 

 

Consider a time dependent but spatially homogenous situation 

in the absence of applied fields. Thus Eq. (13) becomes 

 
𝜕𝑓

𝜕𝑡
=  (

𝜕𝑓

𝜕𝑡
)
𝑐
,                                 (13) 

 

where the term (
𝝏𝒇

𝝏𝒕
)
𝒄
 is expressed in terms of collision 

operator C as  

 

(
𝜕𝑓

𝜕𝑡
)
𝒄
= 𝐶𝜙(𝒓, 𝒌) =  𝛽 ∫𝑽(𝒌

′
, 𝒌)[𝜙(𝒌′) −  𝜙(𝒌)]𝒅𝒌,  (14) 

 

for arbitrary function() and potential(V). In the relaxation 

time approximation, we suppose that (
𝝏𝒇

𝝏𝒕
)
𝒄
 has the simplest 

form which will yield the behavior 

 

(
𝜕𝑓

𝜕𝑡
)
𝑐
=  −

f(K)

τ
.                              (15) 

 

Now for all mechanisms of interest to us, E is not much 

changed in a single event. For elastic scattering such as 

ionized impurity scattering this is strictly true, while for 

acoustic deformation potential scattering (through local band 

perturbation), it is only approximate. Actually in the cases for 

which  is well defined, it is a function of E alone. Thus the 

relaxation time can be written as 

 

𝜏 =  𝜏0𝐸
𝜆 ,                               (16) 

 

The value of the superscript  λ depends on the scattering 

mechanism 3/2 for ionized mpurities and -1/2 for acoustic 

phonons.  In the case of optical phonons the electron scattering 

is not elastic the relaxation time cannot be applied [6]. 

 

B. Electron and heat flux densities 

 

In the steady state in a homogeneous system with electric E 

applied along the x-axis, in the absence of magnetic field, the 

distribution can be written as 

 

𝑓 = 𝑓0 +  𝑓′,                               (17) 

 

which is the solution of 

 

−
𝑒

ℏ
𝑬.𝛁𝐤f0 =  (

∂f′

∂t
)
coll
,                       (18) 

 

where fo is the thermal equilibrium distribution and f’ is a 

first order perturbation given by 

 

𝑓′ = 𝑣𝑥𝑓𝑥 + 𝑣𝑦𝑓𝑦 + 𝑣𝑧𝑓𝑧.                  (19) 

 

Furthermore, 

𝑣 (−
𝜕𝑓

𝜕𝐸
) =  −

1

ℏ

𝜕𝑓

𝜕𝑘
.                           (20) 

 

And Eq. (19) can be solved to find fx for one-dimensional case 

using Eqs. 15, 19, and 20 to give 

 

𝑓𝑥 =  𝜏𝑒 (
𝜕𝑓0

𝜕𝐸
)𝐸𝑥 .                            (21) 

 

Since Ex in Eq. (21) is the d.c. electric field is along x-

direction, and the x-component of the electric current density 

is given by 

 

𝐽𝑥 = −
2𝑒𝑚𝑛

∗3

ℏ3
∫ 𝑣𝑥

2𝑓𝑥𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 .                 (22) 
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Finally after transformation to spherical coordinates (v, , ) 

for velocity components and making use of  Equation 22 for 

fx , we get 

 

𝐽 =  −
𝑒2𝑚𝑛

∗3𝐸𝑣0
5

6𝜋2ℏ3
∫ 𝜏(𝐸)

𝜕𝑓0

𝜕𝐸
𝜀
3

2𝑑𝜀,
∞

0
                (23) 

 

where we make change of variable from v to  = E/kBT. 

Thus for the case of parabolic density of states we obtain 

the following expression for the electrical conductivity 

 

𝜎 =  
2𝑛𝑒2𝜏0

𝑚𝑛
∗

∫ 𝜀2𝑓0𝑑𝜀
∞
0

∫ 𝜀
1
2𝑓0𝑑𝜀

∞
0

=  
2𝑛𝑒2𝜏0

𝑚𝑛
∗

𝐹2

𝐹1
2

,            (24) 

 

where F1/2 and F2  can obtained as family of  the well known 

tabulated Fermi-integral by setting  p equals to 3 and 4 

respectively. 

∫
𝜀𝑝𝑑𝜀

1+𝑒𝑥𝑝(𝜀−𝜂)

∞

0
,                               (25) 

 

where  = EF/kBT is normalized Fermi energy. 

We can obtain similar expression for electrical 

conductivity for the case of non-parabolic modified density of 

states having band tails in Eq. (1) by inserting into Eq. (24) 

which gives 

𝜎 =
2𝑒2𝑛𝜏0

3𝑚𝑛
∗ (

√2𝛿

𝑘𝐵𝑇
)

5

2
𝜓5
2

𝜓0
,                      (26) 

 

where 𝜓5
2

 is obtained from Equation 10 by setting  = 5/2. 

To obtain thermal current density, we use from [7]  

𝑄𝑥 =
2𝑚𝑛

∗3

ℎ3
∫(

1

2
𝑚𝑛
∗𝑣2) 𝑣𝑥𝑓𝑑

3𝑣, 

= = 
−4𝜋𝑚𝑛

∗4

5ℏ4
∫ 𝑣6
∞

0
𝑓𝑥𝑑𝑣,                        (27) 

 

after integrating over spherical coordinates θ and φ.  

In the presence of an external d.c. field Ex and a 

temperature gradient dT/dx along the x-direction, the 

Boltzmann transport equation is written as 

 

𝑣𝑥
𝜕𝑓0

𝜕𝑥
−
𝑒𝐸𝑥

𝑚𝑛
∗

𝜕𝑓0

𝜕𝑣𝑥
= 𝑣𝑥

𝜕𝑓0

𝜕𝑥
−
𝑒𝐸𝑥

𝑚𝑛
∗

𝑣𝑥

𝑣

𝜕𝑓0

𝜕𝑣
=  −

𝑓−𝑓0

𝜏
=

−
𝑣𝑥𝑓𝑥

𝜏
........................................................(28) 

 

One can solve 
∂f0

∂x
 in Eq. (28) as 

 
𝜕𝑓0

𝜕𝑥
=
𝜕𝑓0

𝜕𝑇

𝜕𝑇

𝜕𝑥
, 

= (−
𝜕𝑓0

𝜕𝐸
) [
𝐸

𝑇
+ 𝑘𝐵𝑇

𝜕

𝜕𝑇
(
𝐸𝐹

𝑘𝐵𝑇
)] (

𝑑𝑇

𝑑𝑥
).           (29) 

 

Inserting Eq. (29) into Eq. (28) and solving for fx, we get 

 

𝑓𝑥 = 𝜏
𝑑𝑇

𝑑𝑥

𝜕𝑓0

𝜕𝐸
[
𝐸

𝑇
+ 𝑘𝐵𝑇

𝜕

𝜕𝑇
(
𝐸𝐹

𝑘𝐵𝑇
)] + 𝑒𝐸𝑥𝜏

𝜕𝑓0

𝜕𝐸
.             (30) 

 

Substituting Eq. (30) into Eq. (23), Jx becomes 

𝐽𝑥 = −
𝑒𝑚𝑛

∗3

3𝜋2ћ3
∫ 𝜏𝑣4

𝜕𝑓0

𝜕𝐸
[
𝐸

𝑇
+ 𝑘𝐵𝑇

𝜕

𝜕𝑇
(
𝐸𝐹

𝑘𝐵𝑇
)] (

𝑑𝑇

𝑑𝑥
)𝑑𝑣 −

∞

0

𝑒4𝑚𝑛
∗3𝐸𝑥

3𝜋2ћ3
∫ 𝜏𝑣4

𝜕𝑓0

𝜕𝐸
𝑑𝑣.

∞

0
                      (31) 

 

Since a small current flows, Jx = 0 is assumed for measured 

thermoelectric voltages(V), and the electric field is we obtain 

the following relationship between Ex and dT/dx. 

 

𝐸𝑥 = −(
dT

dx
)
[∫ τ𝑣4 (−

∂f0
∂E)

E
Tdv + ∫ τv4 (−

∂f0
∂E)

kBT
∂
∂T
(
EF
kBT

)
∞

0

∞

0
] dv

e ∫ τv4 (−
∂f0
∂E)

dv
∞

0
.

 

…………………………………………………………(32) 

 

If there are no gradients of concentration, then the second term 

in numerator is cancelled. The Seebeck coefficient() referred 

to as the thermal emf or thermopower [9] is given by 

 

𝛼 =  
𝑑𝑉

𝑑𝑇
= −

1

𝑒𝑇

∫ τv4(−
∂f0
∂ε
)
E

T
dv

∞
0    

∫ τv4(−
∂f0
∂E
)dv

∞
0

, 

 

= −
1

eT
  
∫ E4
∞

0
f0dE

∫ E3f0dE
∞

0

= −
kB
e

∫ ε4f0dε
∞

0

∫ ε3f0dε
∞

0

 

= −
kB

e

F4

F3
.                                  (33) 

 

The Peltier coefficient(), which describes how much 

thermal energy is carried per charge carrier, has primary 

importance in thermoelectric devices related to Seebeck by 

Kelvin relation[10], 

 

 =  −𝑇𝛼 = 
𝑘𝐵𝑇

𝑒
 
𝐹4

𝐹3
,                          (34) 

 

for arabolic density of states. 

We can obtain expressions for  and  for the case of 

modified density of states using the corresponding 

expressions, i.e., Eq. (34) obtained based on standard model 

with parabolic density of states (which doesn’t incorporate the 

effect of band tails) by substituting Eq. (1) for modified 

density of states and by extending the integration limits from 

-∞ to ∞. This yields the following expressions  

 

𝛼 = − 
√2𝛿

𝑒𝑇

𝜓7
2⁄

𝜓5
2⁄

,                           (35) 

and 

 =  
√2𝛿

𝑒

𝜓7
2⁄

𝜓5
2⁄

,                                 (36) 

 

where 𝜓5
2⁄
 and 𝜓7

2⁄
  are obtained from Eq. (10) by setting  

= 5/2 and 7/2 respectively. 

 

 

II. RESULTS 

 

Thomas-Fermi screening length in Eq.( 6) is calculated to be 

 

as  = 7.87X10
−10nn

−
1

6 m,                     (37) 
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and the value of the Gaussian distribution for impurity 

potential energy is  

 

 =  4.375 𝑋10−21𝑛𝑛
5

12𝐽.                     (38) 

 

Thus the electron concentration in the conduction band for 

modified density of states having band tails in Eq. (9) becomes 

 
𝑛

=
𝑚𝑛
∗
3
22
5
4

𝜋2ℏ3
1

2𝜋
1
2

∫ 𝛿
3
2𝑒𝑥𝑝(−𝑧2)

(

 
 0.319 + 0.906𝑒𝑥𝑝(2𝑧)

1 + 𝑒𝑥𝑝 {1.494𝑛𝑛

5
12𝑧 − 𝜂}

)

 
 
𝑑𝑧

0.601

−∞

 

+  ∫
𝛿
3
2𝑧
1
2[1−

1

16𝑧2
]

1 +  𝑒𝑥𝑝{1.49𝑛𝑏

5
12𝑧 − 𝜂}

∞

0.601
𝑑𝑧, 

= 
(1.18)

3
2𝑋(9.11)

3
2𝑋(10−31)

3
2𝑋2

5
4𝑋(4.375)

3
2𝑋(10−21)

3
2(0.3)

5
8

𝜋2𝑋(1.054)3𝑋10−102
 

[∫ (0.28)𝑒𝑥𝑝(−𝑧2) (
0.319 + 0.906𝑒𝑥𝑝(2𝑧)

1 + 𝑒𝑥𝑝{1.494𝑋0.603𝑧 − 𝜂}
)𝑑𝑧

0.601

−∞

 

+ ∫
𝑧
1
2[1−

1

16𝑧2
]

1 +  𝑒𝑥𝑝{1.49𝑋0.603𝑧 − 𝜂}

∞

0.601
𝑑𝑧 ], 

= 3.2𝑋1025X 

[∫ (0.28)𝑒𝑥𝑝(−𝑧2) (
0.319 + 0.906𝑒𝑥𝑝(2𝑧)

1 + 𝑒𝑥𝑝{0.9𝑧 − 𝜂}
)𝑑𝑧

0.601

−∞

 

+  ∫
𝑧
1
2[1−

1

16𝑧2
]

1 +  𝑒𝑥𝑝{0.9𝑧 − 𝜂}

∞

0.601
𝑑𝑧 ].                       (39) 

 

Thus 

 

𝑛𝑛

= 3.2[∫ (0.28)𝑒𝑥𝑝(−𝑧2) (
0.319 + 0.906𝑒𝑥𝑝(2𝑧)

1 + 𝑒𝑥𝑝{0.9𝑧 − 𝜂}
)𝑑𝑧

0.601

−∞

 

+  ∫
𝑧
1
2[1−

1

16𝑧2
]

1 +  𝑒𝑥𝑝{0.9𝑧 − 𝜂}

∞

0.601
𝑑𝑧].                   (40) 

 

Similarly for parabolic density of states 

 

𝑛𝑛 = 3.2𝐹1/2(𝜂),                            (41) 

 

and the rest all integrals are evaluated by inserting them 

directly in the mathematical v.5 installed in the sun ultra 5  

work station computer[11]. and using the above values of  nn 

and 𝜂 obtained by an iterative method which use employed in 

the above simplified expressions which relate them for 

parabolic and modified density of states cases. 

 

The table of values(in the Appendix part of  Table I and 

II), F1/2(-2.6) is evaluated as 

 

 
 

The result is F1/2(-2.6) = 0.0641614 and  the normalized 

concentration is 

 

nn = 3.2 F1/2(-2.6) = 3.2*0,0641614 = 0.2048. 

 

Note that iterative method is not one shot process but it takes 

certain thoughtful steps to get the best value of η which gives 

to nearest possible value of nn= 0.2 which is η = -2.6. This 

procedure was followed to evaluate all values in the table 

including the corresponding values for F3, and F4 for 

parabolic case. 

It is straightforward to use the same procedure for the case 

of modified density of states. In the same way as the previous 

case, in the table of values, nn = 0.2 corresponds to η = -2.9. 

Mathematica software 5.0 is used to obtain 0.0333945 + 

0.13557 = 0.16896 which was taken as the best approximation 

of nn= 0.2 during the iterating method corresponding to η = -

2.9. The same procedure was used for the other pair of values 

in the table. The values of the other integrals ψ0 , ψ5
2

, ψ7
2
 (in 

Appendix part of Table II) were evaluated straight 

forward(even copy and paste of expressions is possible that 

facilitates th process) by using mathematica v.5. 

 

 
FIGURE 1. shows thermoelectric power as a function of electron 

concentration with the solid line marked by circles is for parabolic  

band case and dashed line marked by squares is for modified 
density of states. 

 

The graph in figure 1 represents the dependence of 

thermoelectric power, defined as the voltage difference (V) 

is developed due to temperature difference (T), as a function 

of electron concentration ranging 0.2 – 20 x 1025/m3 for two 

different cases. On average the calculated values of 
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thermoelectric power differ between considerations of 

parabolic and modified density of states by 2% in favor of the 

parabolic density of states consideration. 

The graph in Fig. 2 represents the dependence of Peltier 

coefficient, defined as how much thermal energy is carried per 

charge carrier, as a function of electron concentration ranging 

0.2 - 20 X 1025/m3 for two different cases. On average the 

calculated values of Peltier coefficient differ between 

considerations of parabolic and modified density of states by 

1.44% in favor of parabolic density of states consideration. 

 

 
FIGURE 2. shows Peltier coefficient as a function of electron 

concentration with the solid line marked by circles is for parabolic 
band case and dashed line marked by squares is for modified density 

of states. 

 

 

The experimental result of [12] suggests to use materials in 

semiconductor group (such as SiC, 6H-SiC, and 4H-SiC), in 

high temperature, high power applications. It is found that 4H-

SiC is more preferable because of its higher electron mobility. 

The heavily doped silicon can be used instead at high 

temperature for the reasons indicated in the present study (i) 

relatively higher electron mobility the reason is that there is 

considerable shift in Fermi level as carrier concentration gets 

higher(refer Table A & B in appendix part) that effectively 

narrows  the band gap (ii) thermoelectric power gets higher as 

the currier concentration gets higher that  indicates the 

possibility to pump the heat out from the device that enables 

it to function at higher temperature. (iii) Peltier coefficient, on 

the other hand, indicates recycling of the energy (leakage heat 

current) that increases the device yield and efficiency. Based 

on [13] there are also common resistivity losses, for instance, 

the interaction between the semiconductor and the metallic 

contact of the solar cell. The use of poor thermoelectric 

materials may cause the device inefficiency due to energy 

transfer, recycling or carrier diffusion, for instance, we can 

replace the metallic contact with good thermoelectric 

materials as can be suggested from the result of this study.   

As an extension to this study it is important to focus on 

minority-carrier transport in heavily doped silicon. The 

experimental and theoretical efforts that address such 

important issues are (i) the incomplete understanding of the 

minority-carrier physics in heavily doped Si, (ii) the lack of 

precise measurements for the minority-carrier parameters, 

(iii) the difficulties encountered with the modeling of 

transport and recombination in nonhomogeneously doped 

regions, and (iv) problems with the characterization of real 

thermoelectric materials [14]. 

 

 

III. CONCLUSION  
 

The thermoelectric effect is investigated in terms of 

thermoelectric power and Peltier coefficient which have 

primary importance in device application. There is 

considerable difference of 2% on average between calculated 

value of thermoelectric power based on  the parabolic density 

of states and the modified density of states in favor of the 

former case. The difference between Pelier coefficient values 

calculated for two cases is 1.44% on average in favor of the 

parabolic case that is significant as well. The same trend is 

expected for the electron concentration exceeding 2x1026/m3.  

Laws of modern physics are used in the derivation of modified 

non-parabolic density of states to make corrections for 

parabolic density of states consideration as applied for heavily 

doped silicon, in doing so we can get significant agreement 

with experimental results. 
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APPENDIX 

 
TABLE I. Calculated values for parabolic density of states. 

Serial 
No 

nn 𝜂 F1/2 F3 F4 (x10
-4

 VK
-1

) (x10
-2

 V) 

1 0.2 -2.6 0.064 0.444 1.778 -3.4539 10.3617 
2 0.3 -2.2 0.095 0.66 2.65 -3.4631 10.3893 
3 0.5 -1.7 0.15 1.08 4.36 -3.4819 10.4457 
4 0.8 -1.2 0.24 1.77 7.16 -3.489 10.467 
5 1 -0.9 0.32 2.38 9.64 -3.4935 10.4805 
6 1.3 -0.6 0.41 3.19 12.96 -3.5041 10.5123 
7 1.5 -0.5 0.445 3.51 14.3 -3.5139 10.5417 
8 2 -0.1 0.626 5.17 21.163 -3.5306 10.5918 
9 2.5 0.2 0.781 6.87 28.337 -3.5576 10.6728 

10 3 0.4 0.94 8.288 34.38 -3.5778 10.7334 
11 5 1.2 1.56 17.214 73.58 -3.6867 11.0601 
12 6 1.5 1.875 22.41 97.230 -3.7421 11.2263 
13 8 2 2.5 34.3 153.18 -3.8518 11.5554 
14 10 2.4 3.125 47.5 218.15 -3.9611 11.8833 
15 12 2.8 3.75 65.06 307.59 -4.0777 12.2331 
16 15 3.4 4.688 101.6 504.83 -4.2856 12.8568 
17 18 3.9 5.625 144.13 748.52 -4.4793 13.4379 
18 20 4.2 6.25 176.12 940.14 -4.6041 13.8123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE II. Calculated values for modified density of states having 

band tails. 
Serial No nn η 0 5/2 7/2 ( x10

-4
 VK

-1
) (X 10

-2
 V) 

1 0.2 -2.9 0.08 0..9627 5.047 
-3.455 10.365 

2 0.3 -2.57 0.09 0.6821 3.015 
-3.45 10.35 

3 0.5 -2.09 0.12 0.472 1.6809 
-3.439 10.317 

4 0.8 -1.69 0.14 0.3227 0.9416 
-3.428 10.284 

5 1 -1.5 0.15 0.2681 0.7124 
-3.425 10.275 

6 1.3 -1.28 0.17 0.2167 0.5167 
-3.429 10.287 

7 1.5 -1.15 0.18 0.1933 0.4351 
-3.435 10.305 

8 2 -0.89 0.2 0.1533 0.3079 
-3.456 10.368 

9 2.5 -0.68 0.21 0.1287 0.2373 
-3.482 10.446 

10 3 -0.49 0.23 0.1125 0.1938 
-3.51 10.53 

11 5 0.1 0.28 0.0803 0.1156 
-3.629 10.887 

12 6 0.34 0.3 0.0726 0.0984 
-3.686 11.058 

13 8 0.77 0.33 0.0642 0.0795 
-3.798 11.394 

14 10 1.16 0.36 0.0606 0.0704 
-3.909 11.727 

15 12 1.52 0.39 0.0592 0.0656 
-4.022 12.066 

16 15 2.0 0.42 0.058 0.062 
-4.258 12.774 

17 18 2.46 0.45 0.059 0.061 
-4.444 13.332 

18 20 2.74 0.47 0.0604 0.0608 
-4.520 13.56 

 

 

  

 


